
a journey (starting on)
reverse engineering

game hacks on MacOS ARM and a

few Rosetta facts

nicole (noblenote)

1

about me

nicole / noblenote

mature age student

previously a proj. manager/consultant

interested in firmware analysis and reverse engineering

nicole (noblenote)

https://kernelkennel.com || https://mastodon.social/@noblenote 2

https://kernelkennel.com/
https://mastodon.social/@noblenote

what you'll get out of this talk

how I approached learning game hacking in TYOOL 2025

understand basics of how Rosetta works for x86_64
binaries on MacOS

my first punt of game hacking an x86 game with no
reading of source, on Mac

a small view of internal cheats for AssaultCube, the target

game

nicole (noblenote)

3

what you'll REALLY get out of this talk

nicole (noblenote)

4

many cheat guides are
for Windows in
x86_64, and getting to
a decade old...

nicole (noblenote)

Academy :https://gamehacking.academy

Windows ESP: https://github.com/0xDE57/AssaultCubeHack 5

https://gamehacking.academy/
https://github.com/0xDE57/AssaultCubeHack

and i use macbook....

why?

I enjoy the aluminium block machine

tux-based UI will kill me

ARM (M-series SoC) means battery life

and for Windows...

nicole (noblenote)

6

and i use macbook....

why?

I enjoy the aluminium block machine

tux-based UI will kill me

ARM (M-series SoC) means battery life

and for Windows...

nicole (noblenote)

7

Intel Mac
to Mx Mac

x86-64 to ARM64

Games are still

mostly x86-64

Wait.. how to run

games on new

Mac??

nicole (noblenote)

8

MacOS Games and Rosetta

Rosetta 2 is the way x86-64 binaries like most

games run on Apple Silicon. Phasing out in 2 major

releases from now...

1. Translated ahead-of-time in a cache at

/var/db/oah on first run.

2. Will parse all code needed from x86,
including libraries (signed or not)

3. Pretty efficent with translation, keeps self-
modifying code/indirect branches for JIT

compilation.

nicole (noblenote)

9

if you wanted to look at OAH...

You will need to disable SIP as oah and it's daemon to check oah oahd can't be seen by

root. SIP limits root somewhat on MacOS, and you should keep it on to not get computer lice

Mandiant - Rosetta 2 Artifacts in macOS

nicole (noblenote)

10

https://cloud.google.com/blog/topics/threat-intelligence/rosetta2-artifacts-macos-intrusions

Get your x86 games on Apple
Silicon!

Debug-friendly AOT binary preserves

register names and symbols to refer to

the original binary.

lldb (see register/symbols)

dtrace (syscalls & rosetta state)

otool (disass w/ -tv)

Rosetta creates a return stack that

handles RIP-relative addressing (using

ADRP and ADD for PC-relative

branches)

nicole (noblenote)

11

Process Layout in Rosetta 2

Original x86-64 Binary Kept for

reference to JIT, and debugging

DATA Read-only data (consts)

AOT Translation Primary executable

from oah
JIT Appended ARM64 for JIT usecases

Rosetta Support Code Syscall

translation

nicole (noblenote)

Why is Rosetta 2 fast? - dougallj

https://dougallj.wordpress.com/2022/11/09/why-is-rosetta-2-fast/ 12

https://dougallj.wordpress.com/2022/11/09/why-is-rosetta-2-fast/

Why did I look at Rosetta 2?

our target games will be in x86, like many games - we'll need to keep this in mind!

Frida/many frameworks for x86 hacks did not work with Rosetta 2

translation.

We can leverage that x86 gets translated to inject x86 libraries for the AOT

cache.

Without this game in mind, we could force conditions for JIT to always
consider via self-modifying code.

also... fun

nicole (noblenote)

This is explored in Koh Nakagawa's blog using execv to explore Rosetta 2

https://ffri.github.io/ProjectChampollion/part1/ 13

https://ffri.github.io/ProjectChampollion/part1/

okay lets start the game hack finally

nicole (noblenote)

14

The Obvious Disclaimer

These Cool Three Things Help You Enjoy Modding Without

Legal Aid

1. most EULAs prevent you from modifying the code

2. there ARE games that allow you and even encourage

you to reverse engineer!
Squally https://github.com/Squalr/Squally

PwnAdventure https://www.pwnadventure.com

tldr: don't have this ruins peoples fun and/or be illegal

nicole (noblenote)

15

https://github.com/Squalr/Squally
https://www.pwnadventure.com/

assaultcube - the
game of choice

covered extensively on Windows and

even has a run through on Intel Mac

using Frida for game cheats

https://assault.cubers.net | https://github.com/assaultcube/AC

 Jai Verma presented an Intel Mac hack on AssaultCube

BSides Delhi 2019 https://jaiverma.github.io/blog/ac-hack 16

https://assault.cubers.net/
https://github.com/assaultcube/AC
https://jaiverma.github.io/blog/ac-hack

tools used

1. BitSlicer (memory

scanning/CheatEngine clone)

2. BinaryNinja (decompile that
thing!)

3. LLDB (LLVMs gdb)

Frida could also be used - a pain

due to it wanting to target x86
address space when running a

Rosetta game...

nicole (noblenote)

17

 BitSlicer

https://github.com/zorgiepoo/Bit-Slicer

Similar to Cheat Engine but for MacOS

Narrow down values in memory, debug

instructions and write scripts again vm

regions and debugger methods...

nicole (noblenote)

18

https://github.com/zorgiepoo/Bit-Slicer

cool! now what would we want to edit in a video game
cheat?

Think about what gives you an advantage in a first-person shooter like AssaultCube.

What would it's type likely be? Where would it be in memory?

health (likely an integer; could be defined and initialised per-player from a

signature/definition)

ammo (same....)

location (could be a float or large int, with X/Y/Z locations, kept per-player or in a list

of players?)

How would the game track all players, would it pass-by-reference or value?

nicole (noblenote)

19

finding these values in memory

We can try to use a debugger like LLDB at this stage, but that is very precise for what we are

trying to do, getting a needle in a haystack. We can script it, or use BitSlicer to look for known

values!

AssaultCube isn't in ARM, but translated over x86 for M-series Macs. This means we'll

need to keep this in mind when we see instructions in our debuggers or tools.

nicole (noblenote)

20

the offset safari

Using BitSlicer - ask for all values at

100, then take damage and ask again till

you have very few, then edit them!

After that, set a watch on your

addresses for read/write.

str w3, [x15, #0x418]
ldr w23, [x14, #0x550]
; W is lower 32-bits of X-registers in AArch64

nicole (noblenote)

21

pointing to pointer chains

okay.... so we have the value and the offset from x15 (temp registers) for further work

str w3, [x15, #0x418]
Accessed 1 time
Registers
... etc etc
x15 = 0x7F9F962F3E00 (140323396206080) <- this plus 0x418
fp = 0x201223F20 (8608956192)
Ir = 0x101280ED4

x15 + 0x418 is 0x7F9F962F4218 !

Bit Slicer can help us here again - resolving variables from a pointer!

Using this value to resolve, we'll get the health variable in _DATA.

nicole (noblenote)

22

slay! this is our base_addr + offset value.

Why is it still indirect? In the x86-64 tutorials, this is just the address offset (eg: base() +
0x1000).

This is due to Rosetta's AOT and how it resolved to shared data, but that's okay - we just can

get the base address and do napkin math!

nicole (noblenote)

23

calculator time

now we just get the base address of our

currently running process.

we can use:

LLDB's image list

vmmap

Practice with task_for_pid()
and mach_vm_region() to learn

more about how we'd make an
external cheat with Mach tasks.

nicole (noblenote)

attilathedud/macos_task_for_pid

https://github.com/attilathedud/macos_task_for_pid 24

https://github.com/attilathedud/macos_task_for_pid

nicole (noblenote)

25

we are back - 0x10110DEF0 (health) - 0x100F34000 (base) = 0x1D9EF0

unsafe fn get_base_address(task: task_t) -> Option<u64> {
 let mut address: mach_vm_address_t = 1; // skip null page
 let mut size: mach_vm_size_t = 0;
 let mut info = vm_region_basic_info_64::default();
 let mut count = VM_REGION_BASIC_INFO_COUNT_64;
 let mut object_name: mach_port_name_t = 0;

 unsafe {
 while mach_vm_region(
 //regions (_info/64/_recurse)
 task,
 &mut address,
 &mut size,
 VM_REGION_BASIC_INFO_64,
 &mut info as *mut _ as vm_region_info_t,
 &mut count,
 &mut object_name,
) == KERN_SUCCESS
 // run till kernel yells at us
 {
 // look for read + exec
 let prot: i32 = info.protection.try_into().unwrap();
 if (prot & VM_PROT_READ != 0) && (prot & VM_PROT_EXECUTE != 0) {
 println!(
 "{}: 0x{:x} - 0x{:x}",
 "Found executable region".green(),
 address,
 address + size
);
 return Some(address);
 }
 address += size; // get next chunk
 }
 }

 None
}

nicole (noblenote)

26

making game cheats with these offsets

I'll be working on an internal cheat to slip into the Rosetta 2 AOT cache, which will be internal.

But here's some definitions on external vs. internal cheats

External (use task_for_pid() or alike methods to control process memory via

another process. Another process accesses region to own targets flow)

Internal (load your codecave/cheat as a library that the process brings along for the
ride, or directly recompile)

there's way more styles

hardware (DMA)

hypervisor

nicole (noblenote)

27

well now we can leverage the fact it's x86!

Similar to LD_PRELOAD forces libraries to load ahead of a process, we can use

DYLD_INSERT_LIBRARIES to throw a .dylib file

DYLD_INSERT_LIBRARIES=/x86_64-apple-darwin/ac_itrn.dylib
./assaultcube.app/Contents/MacOS/assaultcube --home=/Library/Application
Support/assaultcube/v1.3 --init -w960 -h600 -z32 -a0 -t0 -s8

Rosetta 2 has less bounds compared to signed ARM/Univeral binaries, and since this is just

x86, we can chuck in this DYLD!

This is also how the POOLRAT (2023) Python2 executed x86-64 versions of ping/chmod to

ARM via Rosetta 2.. but also how we have the AOT evidence of it in MacOS victims!

nicole (noblenote)

3CX Compromise via POOLRAT

https://cloud.google.com/blog/topics/threat-intelligence/3cx-software-supply-chain-compromise 28

https://cloud.google.com/blog/topics/threat-intelligence/3cx-software-supply-chain-compromise

psuedocode of a library to access health

fn get_base() -> Option<usize> {
 return Some(_dyld_get_image_header(0) as usize) // check where it's loaded via image list in lldb
}
unsafe fn patch(offsets: Vec<usize>, base: usize) {
 let mut walker = base;
 for i in 0..offsets.len - 1 {
 walker = *(base).wrapping_add(offsets[i] / std::mem::size_of::<usize>());
 // take base, add offset with wrapping
 // 0x1D9EF0 => 0x0 (ptr->player) => 0x418
 if addr = 0 {
 // OH NO!!!!!!!
 }
 }
 let final_address = (walker + offsets[offsets.len() - 1]) as *mut u64;
 *final_address = 9999; // deref and pwn
 println!("freaked it!");

}

nicole (noblenote)

29

we did it folks... the hello world of game cheats

nicole (noblenote)

0:00 / 0:07

30

It's Just Memory for: pairs of 3x floats (XYZ/velocity), ammo, weapon choice, grenades...

nicole (noblenote)

0:00 / 0:03

31

what about finding how our player gets edited?

We know the location for our health value, they are not instructions, and we know that Rosetta

2 is running this on AArch64.

We can check in a disassembler the health location to understand how the program works in

x86 via disassembly, then checking for symbol stubs in the AOT.

This is where it gets interesting. Sure, we can find it in our x86 code, but what about those

ARM LDR/STR instructions in BitSlicer and LLDB?

nicole (noblenote)

32

disassembly idea...

We could use the XREF of base_address + 0x1DEF90 (health) to understand what functions

are using this value...

We can look at possible functions where values in an instantiations of player values get

edited.

nicole (noblenote)

33

yay! xref to the 'are you dead' function, returning to
player_struct!!!!!!!

nicole (noblenote)

34

final takeaways

amazon kindle title: How I Learned to Stop Worrying a\x9SIGILL

1. Learning RE against larger binaries is honestly way more obtuse than CTFs.
Often you won't get anywhere. We have toolchains, fuzzers et. al for this stuff if

you want to break it quick.

2. This is amazing at getting you across how binaries work and what the hell you are

looking at!
This is so informative, especially if working in an environment you work with all

the time, like MacOS, on the trade-offs of fast, efficent translation of x86.

3. get curious even if you don't know what the end goal is

4. VR optimist: assume a value is something that can be found; the skill of finding it and

if it's useful comes with time and skill

nicole (noblenote)

35

thank you!

thanks to:

dougallj (https://dougallj.wordpress.com/2022/11/09/why-is-rosetta-2-fast/)

tsunekoh (https://ffri.github.io/ProjectChampollion/)

josh goddard (https://cloud.google.com/blog/topics/threat-intelligence/rosetta2-
artifacts-macos-intrusions)

jai verma (https://jaiverma.github.io)

code will be up when my github is not banned for putting memory scanning tools on a newish

account...lol - will notify on mastodon

nicole (noblenote)

https://kernelkennel.com || https://mastodon.social/@noblenote 36

https://dougallj.wordpress.com/2022/11/09/why-is-rosetta-2-fast/
https://ffri.github.io/ProjectChampollion/
https://cloud.google.com/blog/topics/threat-intelligence/rosetta2-artifacts-macos-intrusions
https://cloud.google.com/blog/topics/threat-intelligence/rosetta2-artifacts-macos-intrusions
https://jaiverma.github.io/
https://kernelkennel.com/
https://mastodon.social/@noblenote

